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ABSTRACT 

We characterize the position of a convex body K such that  it minimizes 

M(TK)M*(TK) (the MM*-position) in terms of properties of the mea- 

sures I1" IIKdcr(-) and 11" IIK°da('), answering a question posed by i .  

Giannopoulos and V. Milman. The techniques used allow us to study 

other extremal problems in the context of dual Brunn-Minkowski theory. 

1. In troduct ion  and n o t a t i o n  

In [GM] A. Giannopoulos and V. Milman characterized extremal positions of con- 

vex bodies by the existence of some isotropic measures associated to them and 

they showed that there are deep relations between the solutions of different ex- 

tremal problems involving convex bodies and the existence of some measures with 

isotropic type properties. Following these ideas, the authors in [BR] considered 

similar problems for extremal positions of convex bodies but in the framework of 

the dual Brunn-Minkowski theory, and they realized that there also strong rela- 

tions exist between the solutions of extremal problems and properties of isotropic 

type of some Borel measures. The aim of this work is to study around these ideas 

and answer a question posed by A. Giannopoulos and V. Milman in [GM] about 
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positions of convex bodies minimizing M(TK)M*(TK) .  If K C_ ll~ n is a convex 

body, M(K) is defined by 

M(K) - nlDn ] n-1 NX]lKda(x)' 

where Dn denotes the the Euclidean ball in ~n, ]. ] is the n-dimensional Lebesgue 

measure in ll~ n and H" HK is the gauge of K.  In the same way we define M*(K) 
by M*(K) = M(K°) ,  where K ° is the polar of K given by 

h "° = {x • (x, y) < I vy • K} .  

It is a central topic in the context of local theory of Banach spaces to give 

upper estimates for min{M(TK)M*(TK): T • GL(n)}, since they have many 

remarkable applications. In this approach, T. Figiel, N. Tomczak-Jaegermann 

(see [FT]) and G. Pisier (see [Pi]) proved that  for every centrally symmetric 

convex body K C En there exists a position T K  (i.e., a regular transformation 

T • GL(n)), called MM*-pos i t ion ,  such that  

M(TK)M*(TK)  <_ Clogn ,  

for some absolute constant C > 0. This upper estimate is known as the MM*- 
e s t i m a t e  of K.  For a general convex body K C_ ~n an MM*-estimate was given 

by M. Rudelson (see [R]), who proved that  there exists an affine position t + T K  
of K (involving the Santal6 point) such that  

M(t + TK)M*(t  + TK)  <_ Cn 1/3 loga(n). 

In [GM], A. Giannopoulos and V. Milman tried to characterize when a convex 

body K C l~ n verifies that  

(1.1) M(K)M*(K) = min{M(TK)M*(TK): T • GL(n)} 

in terms of the probability Borel measures on S n-1 defined by 

HK 
d#K(U) = fSn_ 1 [[V[[Kda(v) da(u), 

where da(.) denotes the (n-1)-dimensional Hausdorff measure on the unit sphere 

S n-1 in IRn. Actually, they proved that  a necessary condition for a symmetric 

convex body K to verify (1.1) is that  d#K(.) and d#Ko (.) have the same covari- 

ance matrix. The main goal of this paper is to show that  this kind of conditions 

are also sufficient conditions and we prove the following result: 
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THEOREM 1.1: A symmetric convex body K in I~ n having the origin in its 
interior is in MM*-position if and only if the probabilities #~ and #Ko have 
the same covariance matrices. 

The techniques we use allow us to study this problem in a more general frame- 

work: the dual Brunn-Minkowski theory, obtaining results for convex bodies not 

centrally symmetric. If K is a convex body having the origin in its interior, the 

i-th dual quermassintegral of K (see ILl) is given by 

I~Vi(K) = -nl ~,~_~ pnh_~(u)da(u), 

where PK is the radial function of K defined by pK (x) = max{A > 0: Ax • K}. 

Note that p~:(x) = 1/llxlli~. = 1/hKo(X), where hK(.) is the support function of 

K. Since 

M(K) = ~D~-~vVn+I(/(), 

we can extend the extremal problem (1.1) to the context of dual mixed volumes 

a s  

(1.2) ~Vi(K)I;Vi(K °) = min{I;Vi(TK)~Vi((TK)°): T • GL(n) }, 

for all i • ~. In fact, it is known that 

lim ~V~(TK) = { 0 i f i  • (0, n) 
r~sL(,.) +c~ if i • (-c~,0) U (n, + ~ )  
HTH--*~ 

(see [BR], lemma 2.5), which shows that 

lim 
T E G L ( n )  

I~i(TK)~Vi((TK)O) = ( 0 
+oc 

i f / •  (0, n), 
if i • ( - ~ ,  0) U (n, +c~), 

and therefore the extremal problem (1.2) has solution if i • ( - ~ ,  0) U (n, +c~) 
and it must be replaced by the extremal problem 

(1.3) I;Vi(K)I~Vi(K °) = max{I;V~(TK)I;V~i(TK)°): T • GL(n)}, 

for i E (0, n). In section 2, we characterize the solutions of (1.2) in terms of 

covariance matrices of some probabilities whenever i E ( - ~ ,  0) U [n + 1, + ~ ) .  

We will use essentially the same notation that appears in [Ga] and [Sc]. 
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2. M a i n  resul ts  

If K C_ ]R ~ is a convex body and i E IL we study the extremal values of 

Wi(TK)ITV~(TK) °, where T runs over all regular transformation T 6 GL(n). 
As we noticed in the introduction, we can verify for necessary and sufficient 

conditions for a convex body K and i E I~ 

17Vi(K)ITvi(K °) = min{17Vi(TK)ITVi((TK)°): T 6 GL(n) }, 

if i 6 ( - co ,  O) O (n, +00) or 

17Vi(K)ITVi(K °) = max{17Vi(TK)ITVi((TK)°): T 6 OL(n)}, 

if i 6 (0, n). The following result gives a characterization of the solution of this 

problem when i 6 (-oo,  0) U [n + 1, +co). 

THEOREM 2.1: Let i 6 ( -oo,0)  U [n + 1,co), n 6 N and let K C_ ]R n be a 
"smooth enough" convex body (i.e., hK(.) and hKo(.) are twice continuously 
differentiable) having the origin in its interior. Then the following assertions are 
equivalent: 

(i) I~i(K)IYi(K °) = min{17Vi(TK)ITvi((TK)°): T 6 GL(n)}. 
(ii) For every T e £(IR'~,IR n) 

17gi(K°) ~,,.-1 pK~n-i+l(u)(VhK°(u),T*u>da( u ) 

= 17Vi(K) Is"-' P~7~i+l (u)(VhK(u), Tu}da(u). 

(iii) For every T 6 £(]R n , II~ n ) symmetric 

17Vi(K °) f p~7 i+l (u){VhKo (u), Tu}da(u) 
jS~-I 

= 17Vi(K) Jsf"-I P~7°i+l (u)(VhK(u), Tu)da(u). 

(iv) For everyT 6 £(]~n,~n) 

ITv~ (K °) ./~,,-1 p~Ti(u)(u, Tu)da(u) 

= W (K) £o-1 
(v) For every T e ~(]~n, ~n) symmetric 

I]Vi(K °) fS,,_l pnATi(u)(u , Tu)da(u) 

= £o_1 

pnK:i (U)(U, Tu}da(u). 

pnsoi(u)<u, Tu}da(u). 
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(vi) I;Vi(K)I;Vi(K °) = min{I;Vi(TK)I?Vi((TK)°): T e GL(n)} and the minimum 
on SL(n) is unique up to orthogonal transformation. 

Proof: (i) ~ (ii). For every T E £(I~ n, ~n) there exists ~o > 0 such that for 
1 every 0 < c < ~o we can define T~ = I~ + cT E GL(n). Since for every cllTII < 

(In + cT)- lu  = u - cTu + O(c2), 

1 
pK((In + c T ) - l u )  = (u) -  (Vh o + O( 2) ' 

we get that 

Wi(K) i - n  J~ pTi+l(u)(Tu,~ThKo(u))da(u)+O(¢2) ' 
n n- -1  

o) 

= W~(KO) + i -n n¢/S . -1  P~Y°i+l(u)(T*u'VhK(u))da(u) + 0(¢2)" 

By hypothesis W~(K)IfVdK °) _< 17V~(T~K)I;Vd(T~K)°), therefore if we let c > 

0 +, by using the last expressions for - Wi(T~K) and I~Vi((T~K) °) we get that for 

every T E GL(n) 

~-~ PK (u) (VhKo (u), Tu)da(u) 

< 17Vi (K) I s  ~-' pn-~+l (u)(Vhh" (u), T*u)da(u), 

but if we replace T by - T  in the last expression we obtain (ii). 

(ii) :=~ (iii) and (iv) ~ (v) are trivial. 

In order to prove (iii) ~ (iv) it is enough to check that the following assertions 

are equivalent: 
(iii') For every 0 E S n - 1  

l?Vi (K °) .I¢,,_1 p~  -i+1 (u)(VhKo (u), O}(u, O}da(u) 

= [~Vi (K) ~,~_1 PnK-°i+l (u)(VhK (u), O)(u, 0)da(u). 

(iv') For every 0 E S '~-1 

PK (u)(u,O)2da(u) = kVi(K) ,~-, pnhZi(u)(u,O)2da(u). 
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It was proved in [BR] (by using Laplace-Beltrami operator techniques) that  

for every "smooth enough" convex bodies L, M C_ l~ n with 0 in their interior 

(n -- i) .I¢ ~n-i+l {~ ~,~i ,,-I FL ~Jt'M(U)(VhL°(U)'O>(U'O>da(u) 

~S n-i i = ,,-, PL (U)pM(U)da(u) 

-- i L ,~_ 1 p ~ - i  (U)p~/1 (u)(VhMo (u), O)(u, O)da(u), 

for all t~ E S ~-1. Therefore, if we put L = K,  M = Dn and L = K °, M = Dn in 

the last expression we obtain that (iv t) ¢=v (iii~). 

The final part of the proof of the theorem is different, depending on the index 

i, and we prove (v) ~ (vi) for i < 0 and (iii) ~ (vi) for i _> n + 1. 

(v) ~ (vi) (for i < 0). It is easy to check that  we only have to consider diagonal 

operators T E SL(n) with diagonal elements d l , . . . ,  d~ > 0. 

If we consider the case i ~ - 1 ,  since T E SL(n) it can be easily checked that 

17VdTK)=n-i /K dx 1 ~  p~_i(u)]Tu,_ida(u)" 
n IVixl n 

Hence, by using H61der's inequality in the last expression, it follows that 

~Vi(TK) >_ 17Vi(K)~+I ( 1 ~,~_ pnK-i(u) ,Tu, da(u)) -i 

and, since 0 <_ (u, Tu) <_ ITu], we get that  

nW (K) ITVi(TK) >_ Wi(K) ( ~ J's,,-1 p~-i(u)(-----u, Tu)da(u) ) " 

If we use the same philosophy with ITVi(TK) °, we obtain that 

Wi(TK)I;V~((TK) °) > Wi(K)WdK°) • 
wdK)W (K°) )'. ( 6 

,1  fs"-' P~-i(u)(u'Tu)da(u)~ fs"-' p~-~(u)(u,T-'u>da(u) 

By using the hypothesis, we get that 

W,(K) 
fs,,-1 P~-i(u)< u, T-lu)da( u ) 

o) 

fs,,_1 pnK:i(U)<U, T-lu)da(u) ' 

hence, since i < 0, it is enough to prove that 

(2.4) I~i(K)2 <- nl ~,~_, pnK_i(u)<u, Tu>do.(u) l ~ _ l  PUK-i(u)<u'T-lu)d~r(u)" 
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For every u E S n-1 

{u, Tu}{u ,T- lu}  = u lu 
\ j = l  . x j = l  

> j -u, = 1. 

Therefore, 

_< ru>d.(u)) '/2 

• (1L._lpnK-i(?~)<lt, T-lu>d~(u))l/2 , 

which shows that I]V/(TK)I?Vi((TK) °) _> ITVi(K)I~i(K°). 

Now, if - 1  < i < 0 and we take a diagonal operator T 6 SL(n) with diagonal 

elements d l , . . . ,  dn > 0, since f (x)  = x -i/2 is concave in [0, +oc) we get that  

W,(TK) -!_n L,,-, py~(~) ITul -~ d~(u) 

n ,,-, a~u~ png-i(u)da(u) 

>_- d~ ujp h. (u)da(u) 
r~ n - 1  j = l  

> 1  d~,~j p~_i(u)da(u). 
n n--1 j=l 

On the other hand, by hypothesis we can ensure that 

1 
17Vi((TK)°) = n  L ' , - '  P~:-~i(u)IT-~I- '  do(~) 

1£ ° 
_ d)UjpKo (u)da(u) 

~ - 1  j----1 

I *  n 

= ~ - d}ujp K (u)da(u) 
W~(K) ~ ° - '  ~=1 

L n • 2 . 
17Vi(K °) 1 I I d }  uj PnK-'(u)da(u)" 
~Yi(K) n "-' j = l  
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Now, by combining the last two expressions and by using Cauchy-Schwartz in- 

equality we obtain that  

ITVi(TK)I;Vi((TK)O ) W_ i(K) 
W (K o) 

j = l  j----1 

= G(K) 

which proves that  17Vi(TK)ITVi( (TK) °) >_ I~i(K)ITV~(K°). 

The uniqueness of the extremal position on SL(n) up to orthogonal trans- 

formation is a straightforward consequence of the fact that  the equality in the 

AGM-inequality only happens for dl . . . . .  dn, which means that  T = In. 

(iii) ~ (vi) (i _> n + 1). If T E GL(n), there exist orthogonal transformations 

U, V E O(n) and diagonal transformation T C GL(n) such that  T = VDU. It is 

easy to check that  if K ,  = UK, then I/Vi(K) = I~(K1),  Wi(K °) = IfVi(K~), and 

if K verifies (iii) then K1 also verifies (iii). 

If i = n + 1, by hypothesis we can choose V1 E O(n) and diagonal transforma- 

tion D1 with diagonal elements d l , . . . ,  dn such that  T = V1DIU and for every 

j = l , . . . , n  

dJ ~s,~_ u j ~ ( u ) d a ( u  ) )_0. 

Now, by using the hypothesis for K1 and this decomposition of T we get that  

I~Vu+, ( T K) =I~n+l ( D1K1) 

= l  ~,~_l hK~(D11u)da(u) 

)- l  fz,~_l<VhK[(u),Dllu)da(u) 

1 = - - <VhK1 (u), D~lu)do'(u) 
n o-1 

I~/n+l (K1) 1 
n f OhK1 = -  - ] u E dr1Js J'-~uJ (u)dO'(u) Wn+I(K ) n j-~l 

>_0. 
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In the same way 

~Tn+l ((TA~) °) :~l/'n+l (D11K1) ° 

--- nl ~._1 hK~(Dlu)da(u) 

> ln ~n-1 (VhKI (u), Dlu)da(u) 

1£j; ~( 
=- dj uj u)da(u) >_ O. 

n n - 1 
j----1 

Therefore, by combining these two expressions and Cauchy-Schwarz inequality 

we get that  

~Vn+l (TK)~Vn+I ((T/~') °) 

> W~+~(K1) ~+-; ~K~( 1 ,:£1 '~' L ,  ~ ~ ~ )  
n 

_~fl, n+__~l(i(.~.l~(lj=~ l/~n+l(.[t.1) 'dj'l/2'd; 1'1/2 ~._l ?tj~(u)do.(tt ) )2 

- w , , + , ( K ~ ' )  ~ , , - , < V h K ' ( u ) ' ' > d ' : " ( ~ )  . 

Now, by the homogeneity of hlq (.) we obtain that  

Wn+,/~'/W~+~(/~/°/ ~ W~+,/~'/(~ L_, ~,/~/~o/~/) ~ 
- w n + ~  (K~) 
=W~+I(K1)W~+I (K~) = W~+, (K)W~+, (K°). 

If i > n + 1 the proof can be completed by using the same ideas, since for every 

T E GL(n) symmetric we can find V1, U e O(n) and diagonal transformation 

D1 with diagonal elements dl,... ,dn such that  T = VID1U and for every j = 

1 , . . . , n  

dj ~ - 5 ~  t~jpK~ (~)d~(~) _> 0, 
j&" 

i-n where K1 = UK. Hence, by using HSlder inequality (p = i - n, q - i-'-~-E_ 1 ) we 

get that  

I~Vi(TK) =I~ i (DIK,  ) 

1 i--n ~Vi(I~l)n-i+l (-n ~S"-' h(D'K1)°(tt)pnK~i+l(tt)dsr(tt)) 
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But, by hypothesis 

~S,~-z h(D1 K1)° (u)p~- ~+1 (u)da(u) 

>-/~,~-1 (VhK[ (u), O11u)pnK1 i+1 (u)da(u) 

---- I~i(K1) ~ (VhKl(lt),nlltt)flnK~i+l(lt)d(T(U) 
W ~ ( K ~ )  ~-~ 

~ (  ~ = l~Vi(K1) ,~ ~ uj u)p i+l(u)da(u) > O, 
W ~ ( K ~ )  = - • 

hence 

W~(~)  ~ ~ ~Vi(TK) ~ ~ V ~  n ( l  ~ d ;  l fS~_ 1 uj~(u)pnK~li+l(u)d~Y(u)) 

If we use the same technique with i~Vi(TK) ° and we combine both expressions 

we get that 

Wi(T K) I;Vi( (T K) °) 

I/Vi (K1) i-n 
~-(~Vi(K~)) 2(i''~-n)-1 (1 ~ d; 1 ~sn_ z Uj~(~)flnK~i_bl(u)dtT(u)) 

j=l 
" ( l  ~:ldJ ,~ - z uJOh~Kz(u)pnK~i-bl(~)d(7(u)~i-n'(JUj / 

Finally, by using again the Cauchy-Schwarz inequality we conclude the result. 

The uniqueness of the solution up to orthogonal transformations for T E SL(n) 
is straightforward, since the equality in the Cauchy-Schwarz inequality implies 

in the last expression that Idll . . . . .  Idnl and hence T = In. | 

COROLLARY 2.2: Let K C_ R n be a "smooth enough" convex body having the 

origin in its interior. Then the following assertions are equivalent: 
(i) M(K)M*(K) = min{M(TK)M*(TK): T E GL(n)}. 

(ii) For every T E £(Rn,I~ '~) 

M*(K) f (VhKo (u), T*ulda(u ) JSn-z 
= M(K) fSn-1 (VhK(u), Tu)da(u). 
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(iii) For every T • £ ( R n , ~  n) 

M~(I~P) ~n--1 ]tUNK(u'Tu)do'(U) = M(t~') ~n-1 [lullK°(u'Vu)d°(u)" 

(iv) M(K)M*(K)  = min{M(TK)M*(TK):  T • GL(n)} and the minimum is 

unique on SL(n) up to orthogonal transformation. 

Remark 2.3: If i E [0, n + 1) the assertions (ii) and (iv) (and therefore (iii) and 

(v)) in Theorem 2.1 are necessary conditions for a convex body K C_ ~'~ "smooth 

enough" and such that the origin is in its interior to verify that  

~Vi(K)I?Vi(K °) = ma~{I;V~(TK)~Vi((TK)°): T • GL(n) } 

if i • (0, n) or 

I;Vi( K)I;Vi(K °) = min{I;Vi(TK)I?Vi( (TK)°): T • Gn(n) } 

if i • (n, n + 1). In both cases it can be proved that (iii) and (iv) are equivalent 

conditions. 

Remark 2.4: If K C R ~ is a centrally symmetric convex body then the last 

corollary implies Theorem 1.1, since the probability g g  given by 

IlullK da(u) 
d#K(U) -'- fs~_ 1 iIvIIKda(v ) 

has mean 0. 
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